LARGE AREA FUNCTIONAL **THIN FILM PROPERTIES MAPPING** USING **IN-LINE HYPERSPECTRAL IMAGING** DURING ROLL-TO-ROLL MAGNETRON SPUTTER DEPOSITION

P. Schlenz¹, F. Gruber², J. Hernandez³ and S. Cornelius¹

¹Fraunhofer FEP, Dresden, Germany
²Fraunhofer IWS, Dresden, Germany
³Norsk Elektro Optikk AS, Oslo, Norway

The challenge

- We need precise (< ± 1%) control of
 - > Thin film thickness
 - chemical composition
 - Solid-state phase / crystallinity
 - Surface roughness / morphology

in thin film processing on large area in multilayer stacks

- We miss fast, efficient and accurate methods to measure
 - > thickness of ultrathin transparent layers (\leq 100 nm)
 - > individual layer properties in multilayers
 - > "in-situ" access to solid state phase
 - > access to nano-roughness / density
 - > inline access to functional properties

source: EControl-Glas, GmbH, Plauen

Question:

How can we map/image the (in)homogeneity of relevant thin film properties on large areas (up to 100m²) at high speed?

www.solliance.eu

NanoQI concept

NanoQI methods

- Phase analysis
- Chemical composition

X-ray reflectometry

- Thickness / Multilayers
- Roughness
- (electron) density

• High-speed & high accuracy semi-automated sample evaluation for quality control & HSI model training (calibration)

hypercube single frame spectrometer lens lighting lighting

Hyperspectral Imaging

- 2D Spatially resolved optical transmission/ reflection spectrometry
- Detect defects, gradients, property drifts
- Large area imaging of functional properties
- Inline integration to thin film processing

Data evaluation options for HSI data

Hard modeling

Physical description of received data set

- \rightarrow Could be slow
- → No external ground truth needed

Soft modeling

Pattern recognition by means of un-/supervised data evaluation algorithms

- \rightarrow Could be fast
- → Prediction model must be trained

HSI example: Thickness gradient modelling of AIN on Si wafer

HSI reflection "image" @ 600nm

z-axis = intensity (raw data)

optical reflection spectra at selected pixels: interference pattern -> thickness information

6

HSI example: Thickness gradient modelling of AIN on Si wafer

HSI reflection "image" @ 600nm

z-axis = intensity (raw data)

optical reflection spectra at selected pixels: interference pattern -> thickness information

HSI example: Thickness gradient modelling of AIN on Si wafer

- thickness map of complete wafer with sub-mm spatial resolution ٠
- HSI model can now be used for any unknown AIN/Si sample (without external data) ٠

8 © Fraunhofer FEP

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 862055.

2350

data analysis

~66 cm

~2.5 m/min

450 mm

~0.4 mm

~1.1 mm

~0.3 mm/px

40°

Configuration

- HSI camera working distance: 100 cm 16°
- HSI camera FoV angle •
- Web speed* <1.5 m/min ٠

Experimental parameters:

Field of View (FoV):	292 mm
Pixel size:	0.162 mm/px
Spatial Resolution	~0.25 mm (x)
(using FWHM of 1st derivative)	~0.70 mm (y)

- *) much higher web speed possible via
- accepting some image spatial distortion (in coating direction)
- intelligent "online" HSI data reduction
- increasing HSI data bandwidth

- Transparent oxide double layer
- Complex test object for HSI on coFlex® 600
- Layer thickness determination for modeling still pending

110m

- PCA of the referenced (and normalized) spectra makes spectral differences visible!
- Target: RGB image of the first 3 PCs: different color = different spectral properties

• Different areas of the 10 nm steps are clearly visible \rightarrow Input for HSI Model

Nanoscale, flexible & functional inline method for Materials research and development on large industrial surfaces is just around the corner!

Thank you for listening

Dipl.-Ing. Patrick Schlenz Fraunhofer FEP Winterbergstraße 28, 01277 Dresden, Germany Tel: +49 351 2586 115, patrick.schlenz@fep.fraunhofer.de www.fep.fraunhofer.de

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 862055.

DPG Spring Meeting 30.03.2023